Kernel density estimation (KDE) metrics
metrics_kde.Rd
Kernel density estimation applied to the distribution of point cloud elevation (Z). KDE allows to create a probability density function (using a Guassian kernel). The density function is then used to detect peaks (function maxima). Based on similar metric available in Fusion (see references), with significant differences in the list of output statistics as well as the default bandwidth used when estimating kernel density.
Arguments
- z
Z coordinate of the point cloud (point heights)
- bw
Numeric. Smoothing bandwidth of the
stats::density
function. Note that the default value (bw=2
) does not correspond to the defaultbw
parameter instats::density
.- zmin
numeric. Minimum
z
value. If set,z
values (heights) below are ignored in calculations.- npeaks
Numeric. Maximum number of recorded peaks. If the number of detected peaks is larger than
npeaks
, only the peaks with highest density value are kept.- ...
Other parameters of the
stats::density
function
Value
A list. Number of peaks, elevation, and density value of each peak, distance (height difference) between peaks
References
McGaughey, R.J., 2021. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. http://forsys.cfr.washington.edu/software/fusion/FUSION_manual.pdf
Examples
library(lidR)
library(lidRmetrics)
LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
las <- readLAS(LASfile, select = "*", filter = "-keep_random_fraction 0.5")
m1 <- cloud_metrics(las, ~metrics_kde(z = Z))
m2 <- pixel_metrics(las, ~metrics_kde(z = Z), res = 20)